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MAGNETIC DIPOLE MOMENT PRODUCED BY AN EXPLOSION OF

ONE KILOTON OF TNT
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The paper reports results obtained in numerical simulation of the formation of a magnetic dipole
moment by displacement of the geomagnetic field in an underground camouflet. The cases of chemical
and nuclear explosions equivalent to an explosion of 1 kiloton of TNT are considered. From the
calculation results it is concluded that electromagnetic measurement results can be used for monitoring
of nuclear test.

Introduction. An unresolved problem encountered in nuclear test monitoring under the Comprehensive
Test Ban Treaty is to distinguish between underground nuclear explosions (NE) and large-scale explosions of chem-
ical high explosives (HE). The seismic methods of the international monitoring system cannot differentiate between
a nuclear explosion and a powerful chemical explosion in the case of compact geometry of the HE because seismic
waves do not indicate the course of physical processes at an early stage of explosions. Therefore, the search for
alternate methods of monitoring is urgent. One of these methods is the recording of electromagnetic signals from
explosions. Obviously, in this case, it is necessary to analyze the early stage of the process, which involves phenom-
ena related to the significant difference in initial energy concentration between NE and explosions of chemical HE.
In particular, a difference between electromagnetic signals can be due to displacement of the magnetic field from
the “hot” region of elevated conductivity near the center of the explosion. At a later stage, where electromagnetic
signals are formed by polarization of soil at the shock-wave front, uprise of soil, etc., the difference between NE and
explosions of chemical HE is insignificant.

Simulation of Hydrodynamic Flows That Arise in Explosion. Two types of underground camouflets
(chemical and nuclear) with an energy release of 1 kiloton in TNT equivalent were considered. Calculations were
performed for a compact nuclear explosion for the case where the energy-release region simulating the charge was
located in a mountain mass [1]. In the gas-dynamic calculations, the geometry of the problems was completely
spherical. The chemical HE was TNT with a density of ρ = 1 g/cm3, which is close to its bulk density. A charge of
the chemical HE with a radius of 6.35 m was located in soil. The HE was fired at the center with detonation-wave
propagation to the periphery. In all problems, the boundary conditions were specified at a distance of 2 km from
the charge.

The gas-dynamic calculations were carried out using the VOLNA-96 code, whose basic algorithms are pre-
sented in [2]. Thermodynamic properties were described using the equations of state for the HE and explosion
products (EP) [3]. The case of a mountain mass made up of a hard rock similar in properties to quartzite was
considered. The equation of state for the mountain rock was written according to [4].

In the case of underground NE involving high energy concentration, the properties of materials located in
the near zone of the explosion are described more accurately. In the energy-release region 0 6 r 6 re (re = 20.7 cm),
we used the equation of state for aluminum [5]. In describing the properties of the mountain rock in the near zone,
we took into account the phase transitions of the rock: evaporation, fusion, and polymorphic transition of the
quartz–stishovite type. The mechanism of the indicated transformations and the phase diagram of the mountain
rock corresponded to the data for quartz.
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For a compact NE, we distinguished the zone nearest to the energy-release region re 6 r 6 rl (rl = 231 cm),
in which evaporation and fusion of the rock at the shock-wave front occurred (P > 100 GPa [6]) under subsequent
unloading. The properties of the mountain rock in this zone were described by the equation of state from [5].
In the next region along the path of wave propagation rl 6 r 6 rq (rq = 400 cm), we took into account the
polymorphic transformation of the low-density (quartz) phase to the high-density phase (stishovite) and the reverse
transformation (under unloading). The nonequilibrium character of this transformation was described using a model
close to that proposed in [4, 7–9]. The course of the shock adiabat and rarefaction isentropes in the region of phase
mixing was taken into account in the model by specifying limiting dependences of the metastable concentrations
of the stishovite phase. With a proper choice of these dependences, it is possible to describe all features of the
transformation in quartzite, in particular the split of the basic plastic wave recorded in [10]. The dependences
used in the calculations to determine metastable concentrations in the quartzite–stishovite transformation were
established from the results of [11], and for the reverse transformation, the concentrations were close to equilibrium
values [4]. The equations of state for the quartzite and stishovite phases were derived from the data presented
in [7, 12]. The elastoplastic and strength properties of the mountain rock were described by a model similar to
that in [1]. In describing the elastoplastic flow of the mountain rock, we employed the Prandtl–Reuss equations
(see [13]). For underground NE, we took into account the lithostatic pressure at the depths corresponding to such
explosions (200 m for 1 kiloton of TNT).

Method for Calculating the Magnetic Dipole Moment. The magnetic dipole moment is determined
by solving the Maxwell equations under the assumption that the motion is spherically symmetric. In this case, the
vector-potential A in spherical coordinates (r, θ, ϕ) has one component: A = eϕA0(r, t) sin θ.

The equation for A0 in Lagrange coordinates is written as

d(rA0)
dt
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− 2A0
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,

where σ is the conductivity. The current density j is given by

j = eϕj0(r, t) sin θ
[
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and the magnetic dipole moment is defined by

M =
1
2c

∫
[r × j] dV.

In the present problem, the magnetic dipole moment is directed along the z axis (direction of the Earth’s magnetic
field B0):

Mz =
1
3c

∫
j0(r, t)r3 dr.

The equation for the vector-potential is solved implicitly by running under the following boundary conditions:
1) A0 = 0, j0 = 0 at the center (r = 0);
2) A0 = rB0/2 +Mz/r

2 outside the sphere.
The magnetic intensity vector H is determined from the magnetic moment vector:

H = 3r(M · r)/r5 −M/r3. (1)

Data on the conductivity of EP of different chemical HE differ significantly. In addition, experimental data
are available primarily for the state just behind the detonation-wave front, and there are no reliable data on the
dependences of the conductivity of EP on density and temperature. Therefore, in the calculations, we used the
constant conductivity of EP σ = 0.15 Ω−1 · cm−1, which corresponds to the measurement results for the typical
commercial HE — ammonite [14].

For an underground NE with a power of 1 kiloton of TNT, we took into account the dependence of the conduc-
tivity on temperature and density. The temperature dependence of the conductivity of soil (SiO2) σ1 [Ω−1 · cm−1]
was derived using the data approximation of [15, 16]. For densities of 10−3 g/cm3 < ρ < 10 g/cm3 and temperatures
of 0.25 eV < T < 15 eV, this dependence can be written as

σ1 = f1f2/(f1 + f2),

where f1 = 106 exp
(
−0.5

∣∣∣3.7 − ln T
∣∣∣2.2) and f2 = 100T (ρ/0.005)0.4−T/300. We note that at T > 1 eV, the

dependence of the conductivity on the temperature and density of SiO2 is defined by the function f2.
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Fig. 1 Fig. 2

Fig. 1. (r–t) diagram for an underground explosion of chemical HE: shock-wave trajectory (curve 1) and trajec-
tories of mountain rock particles located at r0 = 6.35 and 10 m from the center of the charge (curves 2 and 3,
respectively).

Fig. 2. (r–t) diagram for an underground nuclear explosion: boundary of the energy-release region in the mountain
rock (curve 1) and trajectories of mountain rock particles located at r0 = 2.31, 6.35, and 10 m from the center of
the charge (curves 2, 3, and 4, respectively).

Interpolation formulas for the conductivity of aluminum σ2 [Ω−1 · cm−1] were constructed similarly from
the results given in [16]:

σ2 = 77T 0.57+0.067 ln T (ρ/(1.82 · 10−4))0.36−0.042 ln T

for 10−3 g/cm3 < ρ < 0.1 g/cm3 and 0.1 eV < T < 100 eV.
Analysis of Results of Numerical Simulation. Figures 1 and 2 show (r–t) diagrams. For firing of the

chemical HE charge at the center, the characteristic time of detonation is 1.3 msec. Because of the low intensity
of loading of the mountain rock particles, the stress wave propagating over the mountain rock has the nature of
an elastic wave. It is followed by a smoothly varying compression wave and a rarefaction wave, in which the rock
undergoes plastic flow and tensile fracture due to the spherical nature of the motion. The motion of the cavity wall
is much less intense for explosions of chemical HE than for a compact NE. Inside the cavity there is intense motion
due to the circulation of the waves reflected from the wall and center of the cavity. In NE, the material (with a
mass of about 70 tons) is heated primarily in the region of its vaporization, while in explosions of chemical HE, the
energy is distributed over the entire mass of the EP (103 tons). In the case of a chemical explosion, the dimension
of the high-conductivity region coincides with the dimension of the cavity because the temperature of the mountain
rock is low.

The dependence of conductivity on radius for a nuclear explosion is shown in Fig. 3. We note that the
jumpwise change of the conductivity on the boundary between Al and SiO2 is due to the fact that in the calculations
we ignored the thermal conductivity (radiant thermal conductivity) and the heating of the soil by the neutrons and
gamma-quanta produced by the NE.

The calculated dependences of the magnetic dipole moment formed in an explosion of chemical HE are
given in Fig. 4a. According to (1), at a distance of r = 1 km, the maximum magnitude of the magnetic field is
B = 2 · 10−14 T. Characteristic features of the results are the presence of oscillations of the magnetic signal and
the strong dependence of the magnetic signal on the conductivity of EP, which is explained by the low conductivity
of the EP. The characteristic time of diffusion of the magnetic field into the immovable region of dimension L and
conductivity σ is τ = 4πσL2/c2. For σ = 1011 sec −1 (σ ≈ 0.1 Ω−1 · cm−1) and L = 635 cm, the characteristic
diffusion time is τ = 3.9 · 10−4 sec. It is much smaller than the time of hydrodynamic processes in the cavity, which
depends on the dimensions of the cavity. Therefore, the signal is recorded as long as the EP move. After stopping
of the motion, the signal decreases to zero in time of about τ . The motion of the EP in the opposite direction gives
rise to a signal of opposite polarity. Thus, the oscillation period of the magnetic signal is the same as that of the
hydrodynamic processes in the cavity.

389



Fig. 3. Spatial conductivity profiles for a nuclear explosion at t = 0.1 (1) and 10 msec (2).

Fig. 4. Time dependences of the magnetic dipole moment for an explosion of chemical HE (a) and an underground
nuclear explosion (b).

Calculation results for a compact NE are presented in Fig. 4b. At a distance of r = 1 km, the magnetic-field
amplitude is B = 1.5 · 10−12 T, which is two orders of magnitude larger than that for explosions of chemical HE.
In this case, the signal shape changes significantly. Since the conductivity of material in the cavity is four orders of
magnitude higher for NE than for explosions of chemical HE, the characteristic diffusion time τ is much larger and
the gas flow inside the cavity does not influence the shape of the signal.

Conclusions. Sweeney [17] gives results of electromagnetic measurements of an underground NE with
a power of 1 kiloton of TNT at 500 m from the epicenter. The measured magnetic-field component Bz is due
to the magnetic dipole moment of the nuclear explosion. The calculations described above give an amplitude of
B ≈ 10−11 T and a pulse width of ∆τ ≈ 30 msec. With allowance for possible differences in calculations and
experiments, there is good agreement between our calculation results and the experimental data of [17].

In a NE, the amplitude of the magnetic signal is about two orders of magnitude larger than in an explosion
of chemical HE of the same power. The shape of the signal changes significantly. In an explosion of chemical HE
with a power of 1 kiloton of TNT, the signal is oscillating with a period of τ ≈ 4 msec. In a NE with a power of
1 kiloton of TNT, the signal increases to the maximum value in about 10−2 sec and then decreases smoothly in a
about 0.1–1 sec.

The authors are grateful to M. I. Avramenko and M. M. Gorshkov for useful discussions of the results.
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